

05MPM/MSE/MPY/MPT/MPE243

USN										
-----	--	--	--	--	--	--	--	--	--	--

NEW SCHEME

Second Semester M.Tech. Degree Examination, June 2007 Finite Element Analysis

Time: 3 hrs.]

[Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Bring out the differences between FEM and continuum methods. (06 Marks)
 - b. Evaluate $\int_{-1}^{1} N^{T}.Nd\xi$, where $\left[N\right] = \left[\left(\frac{1-\xi}{2}\right), \left(\frac{1+\xi}{2}\right)\right]$ (06 Marks)
 - c. Discuss the general algorithm for solving the simultaneous equations by Gauss Elimination method. (08 Marks)
- 2 a. State the principle of minimum potential energy and virtual work. (06 Marks)
 - b. Using Rayleigh-Ritz method, determine the deflection at the center of simply supported beam carrying a point load P at its center. (14 Marks)
- 3 a. Define shape functions and classify them.

(06 Marks)

b. Derive [B] and [K] for 3 noded 1-D element.

(10 Marks)

c. Mention any four elements used in FEA.

(04 Marks)

a. Solve for stresses considering the self weight of the tapered plate subjected to loading as shown in Fig.4(a). Consider E = 210 GPa, thickness to be 10 mm and density as 7.8 g/cm³. (10 Marks)

b. Solve for stresses in the composite rod structure given $E_{AL} = 70$ GPa, $E_{steel} = 210$ GPa as shown in Fig.4(b). Use penalty approach. (10 Marks)

Fig.4(b)

- 5 a. Derive: i) Shape function ii) [B] iii) [J] and [K] for a CST element. (15 Marks)
 - b. Write the relation between stress and strain for axisymmetric element. (05 Marks)
- 6 a. Derive an expression for stiffness matrix of 2 noded truss element. (06 Marks)
 - b. Solve for i) Slopes at 2 and 3 ii) Vertical deflection at midpoint of distributed load for a beam subjected to loading of indicated in Fig.6(b). Consider E = 200 GPa and I = 4 X 10⁶ mm⁴.

7 a. Derive elemental mass matrix of 2-noded 1-D element.

(05 Marks)

b. A composite wall shown in Fig.7(b) consists of 3 materials. Determine the temperature distribution in the wall. Consider the following data:

$$K_1 = 20 \text{ W/m}^0\text{C}, K_2 = 30 \text{ W/m}^0\text{C}, K_3 = 50 \text{ W/m}^0\text{C}, h_\infty = 25 \text{ W/m}^0\text{C}, T_\infty = 800^0\text{C} \text{ and } T_0 = 20^0\text{C}.$$
 (15 Marks)

- 8 Write short notes on any four:
 - a. Hamilton's principle
 - b. Convergence criteria
 - c. Consistent and lumped mass matrices
 - d. Gaussian quadrature
 - e. Stiffness matrix of 4 noded Quadra element.

(20 Marks)
